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Abstract 

Electroplated zinc finishes have been associated with the electronics industry for many years 

as a result of their excellent corrosion resistance and relatively low cost. They are normally 

applied onto ferrous products to provide corrosion protection in a range of different 

environments. However, the formation of spontaneously grown whiskers on zinc 

electroplated components, which are capable of resulting in electrical shorting or other 

damaging effects, can be highly problematic for the reliability of long life electrical and 

electronic equipment. The growth of zinc whiskers has been identified as the cause of some 

electrical and electronic failures in telecommunications and aerospace based applications, 

with consequences ranging from mild inconvenience to complete system failures. 

Investigators have been striving to address the problems induced by whisker growth since the 

1940s. However, most research effort has been focused on tin whiskers; especially following 

European Union environmental legislation that restricted the use of lead (Pb), which when 

alloyed with tin (3 – 10% by weight) provided effective tin whisker mitigation. Compared 

with tin whisker research, much less attention has been paid to zinc whiskers. A number of 

mechanisms to explain zinc whisker growth have been proposed, but none of them are widely 

accepted and some are in conflict with each other. The aim of this paper is to review the 

available literature in regard to zinc whiskers; to discuss the reported growth mechanisms, to 

evaluate the effect of deposition parameters and to explore potential mitigation methods. This 

paper presents a chronologically ordered review of zinc whisker related studies from 1946 to 

2013. Some important early research, which investigated whisker growth in tin and cadmium, 

as well as zinc, has also been included. 

Keywords: whisker growth, zinc, review, electrodeposition  
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1. Introduction 

Metal whiskers are spontaneous growths that can develop from metal surfaces. Whisker 

growth after deposition should not be confused with the dendritic growths that can sometimes 

occur during the process of electrodeposition or as a result of electrochemical migration in 

electronic devices. It has been observed that tin, zinc and cadmium surfaces, in particular in 

the form of electroplated coatings, are prone to develop whiskers. Whiskers have also been 

found growing from other metal surfaces including indium and gold [1]. Normally, metal 

whiskers undergo an unpredictable incubation period ranging from hours to years, followed 

by an approximately constant growth rate [1]. The growth morphologies of whiskers are 

unpredictable; whiskers can grow straight or form kinked or curved eruptions (Figure 1). 

They may also form hillocks or eruptions with particularly complex shapes such as pyramids 

and spiral filaments. In this review, the term “eruptions” is used to refer to whiskers that form 

in the shape of curved growths after electrodeposition, which are different from the nodule-

like growths that are formed during electrodeposition of zinc. With respect to whisker 

dimensions, they are thinner than a human hair and virtually invisible to the naked eye. The 

typical dimension of a whisker is 1 to 5 µm in diameter and 1 to 500 µm in length. In rare 

cases, whiskers have grown longer than 10 mm [2].  

Whisker growth is not a new phenomenon; it can be traced back to the 1940s when the 

presence of cadmium whiskers resulted in the breakdown of radio systems used in aircraft 

during WWП [3]. Since then, the study of metallic whiskers has become of great interest to 

investigators. Many electrical and electronic failures have been attributed to the presence of 

these small metallic growths, with consequences ranging from mild inconvenience to 

complete system failures. During the past 70 years, researchers have been striving to address 

the problems induced by metal whisker growth and a considerable number of whisker-related 

papers have been published. However, most research has, until recently, focused on tin 
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whiskers and today whisker growth on tin is a well-documented but not totally understood 

phenomenon. This is because tin has long been used as a surface finish on electrical and 

electronic components, where whisker growth is particularly problematic. Very little attention 

has been paid to zinc whiskers, due to zinc finishes being applied to applications that were 

considered less sensitive. 

During the last two decades, many electronic failures (Table 1 [4]), especially computer 

equipment failures in Canada in 2003 [5] and the Colorado Secretary of State’s office in 2004 

[6], were attributed to problems induced by zinc whiskers from the bottom surface of zinc-

electroplated steel floor tiles. It is now recognised that zinc whiskers are a potential threat to 

the reliability of long life electrical and electronic equipment, particularly for aerospace, 

power plant and telecommunications applications. Consequently, the number of published 

studies with respect to zinc whiskers has increased significantly. A summarised history of key 

zinc whisker publications is shown in Table 2. 

2. Early whisker research 

Electrical failures caused by metal whisker growth were first discovered during WWП due to 

the choice of cadmium (Cd) as an electroplated coating on electronic components inside 

aircraft radios. These failures were published in a 1946 paper by Cobb [3], who reported that 

the leaves in capacitors used in the radios were electroplated with cadmium, and over time 

long whiskers had formed on the surface of these components. These long filament-type 

whiskers, which are highly electrically conductive, resulted in an electrical short between 

adjacent capacitor plates and hence caused the radio system to fail. 

In 1948, similar failures were found by the Bell Telephone Corporation on some of their 

channel filters used in carrier telephone systems [7]. These electronic failures resulted in 

considerable difficulties in the operation of a transmission channel. The only solution was to 
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replace the filters with a new unit. The failed filters were sent for examination at Bell 

Laboratories. The failure analysis was published in a 1951 paper by Compton, Mendizza and 

Arnold [7]. This paper was a landmark since it made a number of important summary 

statements, which were to guide future investigations into metal whiskers. The paper 

established that whisker formation was not limited to cadmium electroplated components, but 

had also been found on zinc and tin electrodeposits, and also on an aluminium casting alloy. 

Compton, Mendizza and Arnold also suggested that metal coatings applied by other methods, 

e.g. sprayed, evaporated and hot dipped coatings had similar propensities for whisker 

formation. They also proposed that whiskers were not compounds, but spontaneous growths 

of single crystals of the same metal as that from which they were formed. For example, they 

found that whiskers growing from zinc metal surfaces were single zinc crystals with a close 

packed hexagonal structure. It is also worth noting that, in this 1951 paper, Compton, 

Mendizza and Arnold stated that tin whiskers developed more quickly than zinc and 

cadmium whiskers. This might be one of the reasons that the vast majority of subsequent 

research focussed on tin whiskers, while very little attention was paid to other metal whiskers 

in the following years.  

In 1953, the first mechanism for whisker growth was proposed by Peach [8], who stated that 

each whisker contained a screw dislocation and metal atoms migrated and deposited 

themselves at the whisker tip, in the form of spiral growth. However, this hypothesis was 

disproved by Koonce and Arnold [9] when they published the first electron microscope 

micrographs of whiskers growing over several weeks, which suggested that whiskers grew 

from the base. Since then, it is widely accepted that whisker growth occurs due to the 

continual migration of metal atoms to the base of the whisker.  

An important contribution to developing a mechanism for whisker growth was outlined in a 

1954 paper by Fisher, Darken and Carroll [10]. This was a breakthrough since, for the first 
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time, it was reported that whisker growth was a form of mass transport, driven by 

compressive stress gradients that were developed by externally applied pressures. Metal 

atoms were prone to migrate from a region with a high compressive stress to a low 

compressive stress region, where atoms piled up and formed the whisker base. Based on the 

compressive stress mechanism, Fisher, Darken and Carroll concluded that whiskers were 

single crystals spontaneously growing at a linear rate that was determined by the magnitude 

of an externally applied pressure. 

In 1956, Arnold [11] published a review paper that summarised all the whisker-related 

observations made at Bell Laboratories up to that date. He studied the effect of several 

experimental parameters on whisker growth (e.g. exposure to elevated temperature, relative 

humidity, coating deposition methods, coating thickness and substrate material characteristics) 

and stated that each of the factors had only a slight influence on whisker growth. It is also 

worthy of note that the author proposed several whisker mitigation strategies for the first time 

in the published literature. Arnold aimed to reduce whisker growth by the application of a 

variety of thin coatings onto the metal surface (e.g. oil, greases, silicones, waxes, lacquers, 

and chromate conversion coatings on zinc and cadmium). However, he reported that whiskers 

penetrated through all the coatings, especially at the edge or where cracks developed. Even 

though his mitigation strategies failed to effectively inhibit whisker growth, this was the onset 

of whisker mitigation research and paved the way for later investigations.  

In 1957, Baker [12] reported his studies on the distribution of angular bends on whiskers 

formed on the surface of zinc, tin and cadmium electroplated components. Prior to this study, 

the growth directions of whiskers had rarely been published.  Baker found that the bend angle 

distribution had peaks equal to the angles between low-indices directions in the crystal lattice. 

He concluded that the crystal structures of zinc, tin and cadmium whiskers were not coherent 
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with that of the base material and that the angular bends formed in whiskers were due to a 

change in the growth direction at the base of a whisker. 

In 1966, Ellis [13] published a paper regarding the morphologies and growth directions of tin, 

zinc and cadmium whiskers. A number of common growth directions for tin, zinc and 

cadmium whiskers were reported in this paper. Further, by comparing spontaneously grown 

whiskers and vapour-grown filamentary crystals, Ellis concluded that the growth directions 

for whiskers were low index crystallographic directions, the majority of which were 

consistent with those for vapour-deposited crystals and also corresponded to the glide plane 

indices in plastic flow. These results were used to support the whisker growth mechanisms 

that were based on dislocation models. 

3. Zinc whisker research 

The first theories to explain zinc whisker growth were proposed by Lindborg in the 1970s, 

who published a set of monographs solely on zinc whisker topics [14–16]. Lindborg is one of 

the very few researchers to have paid considerable attention to zinc whiskers. In 1975, 

Lindborg [15] produced a paper that studied the driving force for whisker growth from zinc 

coatings electrodeposited on carbon steel substrates. He proposed that whisker formation was 

driven by the internal macrostress of the deposit, which was built into the zinc film during 

electroplating. He further suggested that whisker growth was indeed a form of mass transport 

to relieve built-in internal compressive macrostress and the growth rate was associated with 

the magnitude of the macrostress. Experimental data showed that for a macrostress less than 

45 N/mm2 the growth rate was relatively low, whilst above 55 N/mm2 the growth rate became 

notably higher. Another key finding was the role of microstructural variables on zinc whisker 

growth (e.g. grain size, microhardness and microstrain). He proposed that zinc whisker 

growth was only associated with the built-in macrostresses and that microstructural variables 
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had very little influence. However, these results were obtained from a limited number of 

specimens and the reproducibility was comparatively low. Therefore, such findings could not 

be considered conclusive. In this paper, Lindborg [15] also investigated the effect of the 

crystallographic orientation of zinc electrodeposits on whisker growth.  X-ray diffraction 

(XRD) analysis suggested that zinc grains tended to be orientated with a plane {112�0} 

parallel to the plane of the surface and the crystallographic texture {112�0} appeared to be 

favourable for zinc whisker formation and growth.  

In 1976, Lindborg [16] published another paper that put forward a model for zinc, cadmium 

and tin whisker growth. The author reiterated that the predominant driving force for whisker 

growth was the compressive macrostress produced during electroplating and a two-stage 

model, consisting of a diffusion stage and a glide stage, was necessary for all metal whisker 

growth. In the diffusion stage, a dislocation loop will expand laterally by climb as vacancies 

are emitted away from the loop. When the expanding loop reaches a size corresponding to the 

whisker cross-section, it starts to glide towards the surface. Based on the model, Lindborg 

suggested that a whisker was pushed up one atomic step as each dislocation loop reached the 

surface of the growing whisker. 

Following Lindborg’s observation that zinc whisker formation and growth was driven by 

internal compressive macrostress, several related studies were published in the following 

years. In 1984, an important publication by Sugiarto, Christie and Richards [17] reported on 

zinc whisker formation and growth from bright cyanide zinc electrodeposits, and for the first 

time showed a series of scanning electron microscope (SEM) micrographs of zinc whiskers. 

Sugiarto et al. stated that bright zinc electrodeposits stored at room temperature were highly 

susceptible to whisker growth. They further suggested that organic materials derived from the 

brightener system were capable of producing compressive microstress in the deposit, which 
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was responsible for whisker formation and growth, whilst dull zinc electrodeposits without 

organic materials present did not develop whiskers. Based on these observations, they 

concluded that the predominant driving force for zinc whisker formation and growth was the 

microstress derived from organic materials present in the zinc electrodeposits, and that the 

macrostress of the deposit was not associated with whisker formation and growth.  

Another important aspect of the Sugiarto et al. paper was that it reported the first 

investigations into the role of thermal treatment on zinc whisker growth [17]. A recognised 

problem with whisker research is considered to be the delay before whisker growth can be 

detected. Sugiarto et al. found that a thermal treatment of 175℃ for 24 hours immediately 

after electroplating was an effective method to accelerate whisker growth from zinc 

electrodeposits in the short term. Samples were divided into two groups. Some were stored at 

room temperature (Group І samples) and others were subjected to a post-electroplating 

thermal acceleration treatment prior to being stored at room temperature (Group П samples). 

In the initial examination (24 hours after electroplating), they found that whiskers on Group 

П samples had grown more rapidly than those on Group І samples. However, after 240 days 

storage, the average growth rate of whiskers on the Group П samples had become lower than 

that on the Group І samples and some whiskers on the Group П samples had not grown since 

the initial examination. Although Sugiarto et al. attempted to accelerate zinc whisker growth 

via a post-electroplating thermal treatment, their observations showed that a thermal 

treatment of 175ºC for 24 hours straight after electroplating only accelerated whisker growth 

initially. In the long term, however, there was no difference in whisker growth between the 

two groups of samples. 

Another key observation by Sugiarto et al. was that zinc whisker growth could be temporarily 

retarded by either the application of passivation coatings (i.e. chromate conversion coatings) 

or pre-electroplating processes (e.g. heat treatment of steel substrates prior to zinc 
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electroplating to relieve the stress in the substrate). However, these two methods could not 

completely inhibit long term zinc whisker growth. After 90 days storage, whisker growth was 

detected on both the passivated and the pre-treated samples. Hence, Sugiarto et al. issued a 

warning that zinc whiskers were problematic for the long term reliability of electrical and 

electronic components that were electroplated with bright zinc coatings. The Sugiarto et al. 

paper is important because it is the first paper to discuss zinc whisker mitigation. With regard 

to tin whisker mitigation, a number of mitigation strategies have been developed over the 

years that include the co-deposition of lead (Pb) in tin (Sn) coatings, metal underlays and 

conformal polymeric coatings. However, very little information can be found in the literature 

in relation to zinc whisker mitigation.  

Two papers were published at the end of 1980s regarding the relationship between the 

crystallographic orientation of zinc electrodeposits and subsequent whisker growth from them. 

In 1986, Takemura et al. [18] published a study that highlighted the relationship between the 

crystallographic orientation of zinc coatings electrodeposited on steel substrates and the 

growth directions of the resultant whiskers. They showed data which indicated that zinc 

whiskers on their samples exhibited a <1000> growth direction and concluded that deposits 

with crystallographic textures of {101�0} and {112�0} were favourable for zinc whisker 

growth. Takemura et al. stated that their results were consistent with observations that 

whiskers not only grow perpendicular to the surface, but also were found growing inclined to 

the normal of the surface with an angle of approximately 60º. This paper, for the first time, 

correlated the crystallographic orientation of zinc electrodeposits with the growth directions 

of zinc whiskers. 

In the same year, Takemura et al. [19] published another paper, which reported that the nature 

of the substrate materials (low-carbon steel, silicon steel, amorphous ferrous material and cast 

zinc bars) and the thickness of electroplated zinc coatings had a strong influence on both the 
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crystallographic characteristics of the deposit and subsequent whisker growth. Experimental 

results suggested that, when the deposit thickness was less than 10 µm, the choice of 

substrate material had a strong effect on the crystallographic orientation of the deposit. When 

the deposit thickness was greater than 10 µm, the influence of the substrate materials was 

significantly decreased and deposits on different substrates were found to possess the same 

preferred crystallographic texture {112�0}. With respect to the effect of deposit thickness on 

whisker growth, they reported that the number of whiskers increased dramatically as the 

deposit thickness was increased from 3 µm to 10 µm, while when the deposit thicknesses was 

greater than 10 µm, the number of whiskers was gradually reduced. 

A paper published in 1990 by Nagai et al. [20] provided measurements of microstrain and 

macrostress in zinc electrodeposits and discussed the influence of these two parameters on 

zinc whisker growth. The microstrain was measured using the Hall plot method [21] and their 

experimental data inferred that microstrain did not have an influence on zinc whisker growth. 

Macrostress in the deposit was measured by means of X-ray macrostress measurements and 

bending strain methods. Nagai et al. found that the X-ray macrostress measurements obtained 

by measuring lattice compression were not reliable and suggested that the bending strain 

method was simpler and more reliable. Their bending strain data indicated that a larger 

macrostress contributed to a higher zinc whisker growth rate. A considerable number of zinc 

whiskers were found on samples having a macrostress of more than 60 MPa. These 

observations with respect to the influence of microstrain and macrostress on whisker growth 

rate were in agreement with the earlier Lindborg study [15]. 

In 1991, Garner et al. [22] of the Harshaw Chemical Company reported their studies of zinc 

whisker growth on both alkaline cyanide and acid chloride zinc electrodeposits. Their 

company was part of a programme to solve the problem of why decorative zinc 

electrodeposits, applied onto refrigerator shelf hardware, unexpectedly became “hazy” in 
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appearance. Low cyanide zinc electrodeposits were coated with lacquer and thermally treated 

at 175°C for 15 minutes to cure the lacquer. It was observed that originally bright as-

electroplated deposits became “significantly hazy” in appearance during heat treatment and 

continued to become more “hazy” for several hours. Further, they found that a higher current 

density and a greater deposit thickness could result in more “hazy” appearance. Garner et al. 

speculated that the change in appearance was induced by the formation and growth of zinc 

whisker eruptions and filaments. They established a series of experiments to investigate 

whisker growth from both alkaline cyanide and acid chloride zinc electrodeposits and 

presented some results regarding the influence of deposit thickness, deposition current 

density, solution temperature and macrostress on zinc whisker growth. These observations 

were consistent with the earlier Sugiarto et al. study [17] and the importance of this paper is 

that it gave a warning that zinc electroplated components were susceptible to whisker growth 

when subjected to a thermal treatment straight after deposition. 

In 1994, an important paper was published by Downs and Francis [23] that outlined a zinc 

whisker related lawsuit between a medical-device maker and a rotary switch manufacturer. 

They reported on the failure of rotary switches used in medical components, which was 

traced to the growth of zinc whiskers on the surface of the switch that had induced short 

circuiting. The rotary switch manufacturer had been aware that tin and cadmium electroplated 

components had propensities for whisker growth, but had no idea about the phenomenon of 

zinc whisker growth. Hence, initially, they could not explain the cause of the failure and 

spent hundreds of hours examining this unexpected failure. They stated that problems caused 

by zinc whisker growths had not appeared previously because the rotary switches had been 

widely applied in high-voltage applications, under which zinc whiskers were electrically 

burnt-out and eliminated. However, in more recent years, the majority of rotary switches had 

been used in low-voltage applications, and as a result zinc whiskers had survived and given 
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rise to electronic failures. This paper was not academically significant, but did strongly 

underline the potential failures that could be induced by zinc whiskers. 

Since the turn of the century, zinc whisker research has been more widely studied due to an 

increasing number of electronic equipment failures that have been attributed to zinc whisker 

growth. 

Reynolds and Hilty [24] published a paper in 2004 that for the first time investigated zinc 

whiskers by means of a focused ion beam (FIB) technique. They presented a series of FIB 

images showing cross-sectioned zinc electrodeposits on carbon steel substrates, which 

appeared to suggest that both the zinc electrodeposits and the whiskers growing from them 

were polycrystalline and fine grained (sub-micron). This observation is significant because it 

showed for the first time that metal whiskers were not always single crystals but could also be 

polycrystalline, which conflicted with the widely accepted belief that had been held for many 

years [7]. However, based on their FIB results, it is not clear whether the whiskers were 

single crystals or not, since their cross-sectional images showing metal whiskers were not of 

sufficiently high quality. The paper also discussed the influence of intermetallic compounds 

on zinc whisker growth. It is widely acknowledged that the formation and continual growth 

of intermetallic compounds at the interface between tin electrodeposits and copper substrates 

is one of the major driving forces for tin whisker growth [25–27]. However, the effect of 

intermetallic formation has not been widely reported with respect to the growth of zinc 

whiskers. Based on their FIB images, Reynolds and Hilty reported that iron-zinc intermetallic 

compounds were not present at the Fe/Zn interface, and further concluded that intermetallic 

compounds did not appear to be associated with whisker growth from zinc electrodeposits on 

carbon steel substrates.  
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Between 2005 and 2007, a series of papers regarding the driving force for zinc whisker 

growth from hot-dip galvanised (HDG) zinc coatings and bright zinc electrodeposits were 

published by Lahtinen and Gustafsson [28–30], who for the first time, presented experimental 

evidence for whisker growth from HDG coatings, as shown in Figure 2. It was observed that 

the inner surfaces of HDG steel pipes were populated with long filament type whiskers (up to 

10 mm in length), after being stored in a warehouse for more than 15 years.  

Lahtinen and Gustafsson [28–30] suggested that compressive stress, derived from a thermal 

expansion mismatch, could be an important factor in whisker growth on both zinc 

electrodeposits and HDG coatings. Two factors were considered noteworthy, a) the large 

difference in the coefficients of thermal expansion (CTE) of zinc crystals between the a-axis 

and the c-axis and b) the difference in CTEs between the substrate material (iron) and the 

zinc coating. These two factors were thought to be responsible for the generation of thermal 

stresses when subjected to temperature fluctuations. Lahtinen and Gustafsson further 

proposed that both dull HDG coatings and electroplated coatings with brighteners were more 

prone to develop whiskers, since larger thermal stresses were detected in their coating layers.  

The effect of surface contaminants on zinc whisker growth was also studied by Lahtinen and 

Gustafsson [28–30], who reported that chlorine and sulphur were detected in the areas of 

whisker growth on both HDG coatings and zinc electrodeposits. Their energy dispersive X-

ray (EDS) analysis data showed that the chlorine levels were greater than sulphur levels near 

the whisker root and in regions where numerous zinc whiskers were observed, whilst in 

regions with little or no whisker growth, chlorine levels were lower. They suggested that 

chlorides derived from contaminants on the surface were associated with whisker growth, 

since a chloride pit was found to form near the root of each long filament whisker. Lahtinen 

and Gustafsson stated that chlorides were able to disrupt the passive layer exposing the zinc 
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deposit and thereby resulted in the corrosion of zinc coatings, which might facilitate whisker 

growth.  

In 2009, a paper regarding the influence of thermal treatment on zinc whisker growth was 

published by Chapaneri et al. [31], which studied the growth of whiskers from bright acid 

chloride-based zinc electrodeposits when subjected to elevated temperatures. They observed 

that a large number of zinc whiskers were present on samples that were exposed to 150ºC for 

1 hour after deposition, whilst no whisker growth was detected on similar samples stored at 

room temperature. They suggested that thermal treatment at 150ºC for 1 hour could 

significantly facilitate, rather than mitigate, whisker growth from bright acid zinc 

electrodeposits.  

The published research with regard to the role of thermal treatment on zinc whisker growth 

suggests that a post-electroplating thermal treatment would accelerate rather than mitigate 

whisker growth from zinc electrodeposits [17][22][31]. However, for tin whiskers, it is 

generally accepted that a post-electroplating thermal treatment is able to reduce tin whisker 

growth. The first evidence that thermal treatment could be used as a tin whisker mitigation 

method was reported by Glazunova in 1962 [32], who suggested that samples treated at 

100℃ for more than 6 hours or at 150℃ for more than 2 hours were much less prone to 

develop whiskers. Britton [33] in his 1974 paper proposed that thermal treatment at 200℃ for 

1 hour completely prevented whisker growth on tin-electroplated copper for a period of 5 

years. In 1975, Sabbagh and McQueen [34] reported a negative influence of thermal 

treatment on tin whisker mitigation. They observed that, after 6 years, whisker growth was 

observed on both tin-electroplated steel exposed at 165℃ for 3 hours and tin-electroplated 

copper exposed at 194℃  for 4 hours. Hence, they concluded that a post-electroplating 
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thermal treatment was capable of slowing down tin whisker growth, but could not completely 

prevent whiskering.  

Since it is known that whisker growth is a function of a complex relationship of various key 

parameters (e.g. electrodeposit chemistry, storage conditions and post-electroplating 

treatment), it is difficult to ensure the reproducibility of whisker growth testing between 

different studies and this is a major problem for whisker related research.  

In 2009, a paper regarding the role of intermetallic compounds on zinc whisker growth was 

published by Baated, Kim and Suganuma [35], who studied zinc-electroplated steel raised 

floor tiles that had been used in a computer data centre for over 10 years.  By means of 

electron probe micro analysis (EPMA) and X-ray diffraction analysis (XRD), they observed 

that both iron-zinc (Fe-Zn) intermetallic compounds and zinc oxides were present. They 

reported that Fe-Zn intermetallic compounds were not only formed at the interface between 

the zinc film and the substrate, but also within the electroplated zinc coatings themselves. 

This observation was not consistent with the widely accepted premise that intermetallic 

compounds were only formed at the coating/substrate interface. They accounted for this 

anomaly by suggesting that Fe atoms must migrate from the substrate and diffuse into the 

deposit, and subsequently react with zinc to form the intermetallic compounds. With respect 

to the distribution of zinc oxides, the majority of them were observed on the deposit surface. 

Based on their observations, Baated, Kim and Suganuma proposed a growth mechanism that 

highlighted the influence of Fe-Zn intermetallic compounds and zinc oxides, which could 

result in the development of compressive stresses within the deposit and the diffusion of zinc 

atoms towards the surface. Subsequent whisker growth occurred from the surface to relieve 

the stress. This proposition was in conflict with Reynolds and Hilty’s study in which no Fe-

Zn intermetallic compound formation had been observed [24].  
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In 2010, Baated, Kim and Suganuma [36] published another paper that presented further 

experimental evidence to support their mechanism for zinc whisker growth. Elemental 

analysis of the same samples by FIB and TEM-EDX techniques confirmed that Fe-Zn 

intermetallic compounds had formed throughout the entire electroplated zinc coatings, which 

could result in a compressive stress in the zinc film and promote whisker growth from the 

surface. In this paper, Baated, Kim and Suganuma [36] also suggested some potential 

mitigation methods, based on their assumption that Fe-Zn intermetallic compounds formed in 

the electroplated zinc layer and the Fe/Zn interface were responsible for whisker growth. 

Their proposals included a) the application of a diffusion boundary layer (e.g. a nickel layer) 

between the zinc deposit and the steel substrate that could prevent the formation of Fe-Zn 

intermetallic compounds, b) the introduction of a high-temperature heat treatment after 

deposition that could result in a uniform intermetallic compound layer and stress relief and c) 

the application of a physical barrier (e.g. metal nanofilm or conformal coating) on the surface 

to inhibit whisker growth.   

In 2012, another important paper regarding the role of intermetallic compounds on zinc 

whisker growth was published by Fortier and Pecht [37], who reported on a comparative 

study of different metal films (tin, zinc and cadmium) and their propensities for subsequent 

whisker growth. By investigating zinc-electroplated samples that were thought to be 15 – 20 

years old, they found that a considerable number of large whiskers were present on the 

surface of zinc-electroplated steel components. Analysis of the cross-sectional microstructure 

using FIB showed that a layer of Fe-Zn intermetallic compound was present at the interface 

between the zinc film and the steel substrate, but it was very thin (<< 1 µm) and did not 

continue to increase in size over time. Fortier and Pecht concluded that Fe-Zn IMCs were 

present at the coating/substrate interface, but they were not associated with whisker growth; 

unlike the case of Sn-Cu IMCs in Sn films. This proposition was clearly not consistent with 
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the earlier study by Baated et al. [35]. Fortier and Pecht stated that whisker growth was 

associated with the oxidation that occurred on the deposit surface [37]. They rationalised that 

the oxidation process produced voids near the surface, which then diffused downwards into 

the zinc film. The inward diffusion of the voids caused zinc atoms to migrate upwards to the 

surface and form whiskers. This assumption was supported by their FIB and TEM analysis, 

which showed a number of voids present in the microstructure of the zinc film beneath a 

whisker. 

Etienne et al. [38] in 2012 proposed a whisker growth model based on recrystallisation. Their 

samples, fabricated in 1982, were low alloy carbon steel substrates electroplated with 10 µm 

zinc coatings, which were subsequently treated with a 200 nm chromate conversion coating. 

It was observed that a number of filament type whiskers had formed from eruptions and 

grown up to 8 mm in length after approximately 30 years in service. By measuring residual 

stresses in the sample using XRD, Etienne et al. reported that a compressive stress of 30 ± 9 

MPa was measured in the zinc film, which was lower than that in a freshly deposited zinc 

film (51 to 71 MPa [39]). They suggested that stress relaxation occurred in the deposit as 

whiskers were growing from the surface and whisker growth was essentially to relieve the 

compressive stress within the zinc film. To understand the mechanism for zinc whisker 

growth, Etienne et al. used focused ion beam (FIB) and electron backscatter diffraction 

(EBSD) techniques to characterise the cross-sectional microstructure both far from a whisker 

and at the root of a whisker. It was observed that the zinc deposit far from a whisker was 

comprised of columnar grains, whilst in the vicinity of the whisker root the grain size was 

generally increased and oblique grain boundaries were present. In addition, grains near the 

whisker root did not exhibit the same crystallographic orientation as those away from 

whiskers. Based on these observations, they stated that the grains near the whisker root were 

recrystallised and they further proposed that recrystallisation was closely associated with zinc 
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whisker formation and growth. This statement is consistent with several tin whisker growth 

mechanisms based on recrystallisation [13, 40, 41].  

In 2013, Etienne et al. [42] presented additional experimental results to support their 

proposed growth mechanism based on recrystallisation. They first investigated a sample that 

was extracted at the root of a filament type whisker growing directly from the deposit surface. 

They found that zinc grains near the whisker root were recrystallised. More surprisingly, 

cavities were observed within the zinc coating (up to ~ 9 µm under the surface).  The volume 

of the cavities was much smaller than that of the filament whisker; i.e. atoms coming from 

the cavities were not sufficient to produce the whisker. Based on this result, Etienne et al. 

confirmed that a long-range diffusion mechanism was associated with zinc whisker growth. 

A further sample was investigated, which contained a filament type whisker growing from a 

eruption. They reported that grains at the whisker root and in the whisker eruption were both 

recrystallised and exhibited the same characteristics, which further strengthened their 

proposed whisker growth mechanism based on recrystallisation. 

4. Conclusions 

Compared with tin whisker investigations, much less research effort has been focused on zinc 

whiskers. Some zinc whisker growth mechanisms have been proposed, but the results of such 

studies are often conflicting and there is, at present, no widely accepted growth mechanism in 

place. Also, there are very few investigations into the role of parameters (e.g. substrate 

materials, electrodeposit characteristics and storage conditions) that may be associated with 

zinc whisker growth and it is still not clear how these parameters affect the propensity of a 

deposit to grow whiskers. The development of whisker mitigation strategies is limited due to 

the incomplete understanding of zinc whisker formation and growth mechanisms. Post-

electroplating thermal treatment, which has been identified as an effective mitigation method 
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for tin whiskers, was, however, found to promote zinc whisker growth. Other potential 

mitigation methods such as conformal polymeric coatings and metal underlays have been 

proposed to address zinc whisker growth. However, it is not known how effective such 

mitigation strategies would be, since there is no related research in the literature.  
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Figure 1 SEM images showing examples of different zinc whisker morphologies: a) a 
straight filament whisker; b) a curved filament whisker and c) two odd-shaped whisker 

eruptions 
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Figure 2 Images showing inner surfaces of hot-dip galvanised steel pipes densely populated 

with filament-type zinc whiskers (some longer than 10 mm in length) after being stored in a 

warehouse for more than 15 years, images courtesy of the NASA Electronic Parts and 

Packaging (NEPP) Program http://nepp.nasa.gov/whisker 

http://nepp.nasa.gov/whisker
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Table 1   Reported electronic failures caused by zinc whiskers, based on the information from 

Reference [4] 

Year  Whiskers on Applications 

1987  Local Power Range Monitoring 

(LPRM) Detectors 

Dresden nuclear Power Station 

1990 Rotary Switch Apnea Monitors 

1990 Local Power Range Monitoring 

(LPRM) Detectors  

Duane Arnold Nuclear Power Station 

1995 Framework Telecom Equipment 

1996 Chassis Computer Routers 

1998 Chassis Computer Hardware 

1999 Xsistor Package +Standoff Missiles  

1999 Chassis Computer Routers 

2001 Bus Rail  Space Ground Test Equipment 

2003 Floor Tiles Computer Data Centre in Canada [5] 

2004 Floor Tiles Computer Data Centre in USA [6] 

2004  Floor Tiles Computer Data Centre in Australia [43] 

2012  Floor Tiles Computer Data Centre in North East 

England [44] 
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Table 2   Abbreviated history of published work in regard to zinc whiskers 

 

 

Year Summary of the findings 

1975 The first report on the growth mechanisms of zinc whiskers was published 
by Lindborg, who proposed that whisker formation and growth from zinc 
electrodeposits was driven by the built-in internal macrostress [15]. 

1984 Sugiarto et al. suggested that the predominant driving force for zinc whisker 
formation and growth was the microstress derived from organic materials 
present in the zinc electrodeposits [17]. 

1986 Takemura et al. published two papers studying, firstly, the effect of zinc 
electrodeposit crystallographic orientation on whisker growth and secondly, 
the influence of different substrate materials on whisker growth[18][19]. 

1990 Nagai et al. published work detailing the measurement of microstress and 
macrostress in zinc electrodeposits and the influence of these two 
parameters on whisker growth [20]. 

1994 An important paper was published by Downs and Francis that outlined a 
zinc whisker related lawsuit between a medical-device maker and a rotary 
switch manufacturer. This paper highlighted the potential failures that could 
be induced by zinc whiskers [23]. 

2004 Reynolds and Hilty published a paper that, for the first time, investigated 
zinc whiskers using a focused ion beam (FIB) technique. Their results 
suggested that iron-zinc intermetallic compounds were not associated with 
whisker growth from zinc electrodeposits on carbon steel substrates [24]. 

2005 – 2007 Lahtinen and Gustafsson for the first time presented experimental evidence 
for whisker growth from hot-dip galvanised coatings. They proposed that 
compressive stress, derived from a thermal expansion coefficient mismatch, 
is an important factor in whisker growth on both zinc electrodeposits and 
HDG coatings [28][29][30]. 

2009 Chapaneri et al. reported that a post-electroplating thermal treatment at 
150°C for 1 hour could significantly promote whisker growth from bright 
acid zinc electrodeposits [31]. 

2009 - 2010 Baated et al. published a paper highlighting the role of intermetallic 
compounds and surface oxides on zinc whisker growth and proposed 
potential mitigation methods [35][36]. 

2012 – 2013 A whisker growth model based on recrystallisation was proposed by 
Etienne et al., who found that zinc grains near the whisker root were 
recrystallised [38][42]. 


